본문 바로가기
AI & Data Analysis/Deep Learning

[ScRAT] Complete Summary

by doraemin_dev 2025. 8. 21.

A complete summary of the notes written while reading the ScRAT paper and running its code.

 

[ScRAT] Paper

https://academic.oup.com/bioinformatics/article/40/2/btae067/7613064

 

[ScRAT] Paper Review

[ScRAT] Phenotype prediction from single-cell RNA-seq data using attention-based neural networks

 

[ScRAT] Phenotype prediction from single-cell RNA-seq data using attention-based neural networks

논문 https://academic.oup.com/bioinformatics/article/40/2/btae067/7613064정리  Attention 기반 신경망을 사용한 / 단일 세포 RNA-Seq 데이터의 / 표현형 예측Attention 기반으로 진행하는 것이 이 논문의 핵심!Attentino

doraemin.tistory.com


Code Execution

[ScRAT] Code Demo

 

[ScRAT] scRNA Analysis

 


Customized dataset code execution

[ScRAT] customized dataset

 

[ScRAT] customized dataset

Paper : Phenotype prediction from single-cell RNA-seq data using attention-based neural networks https://academic.oup.com/bioinformatics/article/40/2/btae067/7613064본 논문에서 언급된 ScRAT 방법으로 scRNA 분석하기[ScRAT] scRNA Analysis [ScR

doraemin.tistory.com

 

[ScRAT] customized dataset with CrossValidation

 

[ScRAT] customized dataset with CrossValidation

main.py에for loop 전체 변경하자.# 사전 생성된 split 파일을 기반으로 고정된 train/test 데이터셋으로 실험을 수행하기 위해 (2번코드) # => 주석처리# 3. for loop 직접 구성 (repeat × fold)for repeat in range(args.

doraemin.tistory.com


Results

[ScRAT] SPILT Dataset Results

 

[ScRAT] using SPILT Dataset

COVID 데이터셋에 대하여, 단일 데이터(.h5ad)가 아닌, 직접 (5개의 repeat) * (5개의 fold)를 나눠주고 지정하여 결과를 확인해보자먼저, 단일 데이터로 Hyperparameter Tuning을 해주었다HMAIL (HA) 논문의 baselin

doraemin.tistory.com

 

 

 

Data

[ScRAT] Exploratory Data (Summary)

 

Whether the dataset used for training scGPT and CellFM includes this dataset

[ScRAT Dataset] compare in cellxgene

 

[ScRAT Dataset] compare in CellFM


Workflow Summary

 

[ScRAT 흐름] Phenotype prediction from single-cell RNA-seq data using attention-based neural networks

 

[ScRAT] STEP 1. Sample mixup

 

[ScRAT] STEP 2. Attention layer

 

[ScRAT] utils.py _ mixup()

 

[ScRAT] utils.py _ sampling()

 

[ScRAT] sampling() function process

 

[ScRAT] using of cell type annotation

 


+ Mention of ScRAT in the HMIL paper

 

[Hierarchical MIL] compare AI Model

 

[Hierarchical MIL] compare AI Model

Hierarchical MIL (Multiple Instance Learning) 방법론과 비교하기 위해 사용된 최신 대표 모델에 대해 알아보자.(참고) Hier-MIML 논문 리뷰 : [Hierarchical MIL] Incorporating Hierarchical Information into Multiple Instance Learni

doraemin.tistory.com

 

 

 

'AI & Data Analysis > Deep Learning' 카테고리의 다른 글

AMP + TF32  (2) 2025.08.29
[ScRAT] using of cell type annotation  (0) 2025.08.20
[protocell4P] Customized Dataset  (2) 2025.08.14
[Survey] Methods to Reduce Cell Count  (2) 2025.08.14
[ScRAT] SPILT Dataset Results  (4) 2025.08.08